Заголовок:
Комментарий:
Готово, можно копировать.
РЕШУ ЦТ — математика
Вариант № 42565
1.  
i

Объем ко­ну­са равен 9, а его вы­со­та равна  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби . Най­ди­те пло­щадь ос­но­ва­ния ко­ну­са.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби
2) 6
3) 54
4)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 27 конец дроби
5)  дробь: чис­ли­тель: 27, зна­ме­на­тель: 2 конец дроби
2.  
i

Ре­зуль­тат раз­ло­же­ния мно­го­чле­на x (4ab) + b − 4a на мно­жи­те­ли имеет вид:

1)  левая круг­лая скоб­ка 4a минус b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 4a минус b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс b пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 4a минус b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка
4) x
5) x плюс 1
3.  
i

Най­ди­те пе­ри­метр пра­виль­но­го ше­сти­уголь­ни­ка, мень­шая диа­го­наль ко­то­ро­го равна 11 ко­рень из 3 .

4.  
i

На ри­сун­ке изоб­ра­же­на пра­виль­ная че­ты­рех­уголь­ная пи­ра­ми­да. Среди от­рез­ков SB, MQ, SM, SO, MN ука­жи­те от­ре­зок, ко­то­рый яв­ля­ет­ся апо­фе­мой пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды.

1) SB
2) MQ
3) SM
4) SO
5)
5.  
i

Из точки A к окруж­но­сти про­ве­де­ны ка­са­тель­ные AB и AC и се­ку­щая AM, про­хо­дя­щая через центр окруж­но­сти O. Точки B, С, M лежат на окруж­но­сти (см. рис.). Из­вест­но, что BK  =  4, AC  =  9. Най­ди­те длину от­рез­ка AK.

1) 4
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 97 конец ар­гу­мен­та
3) 65
4) 5
5)  ко­рень из: на­ча­ло ар­гу­мен­та: 65 конец ар­гу­мен­та
6.  
i

Рас­по­ло­жи­те числа 2 в сте­пе­ни левая круг­лая скоб­ка 20 пра­вая круг­лая скоб­ка , 9 в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , 33 в сте­пе­ни 4 в по­ряд­ке воз­рас­та­ния.

1) 9 в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , 2 в сте­пе­ни левая круг­лая скоб­ка 20 пра­вая круг­лая скоб­ка , 33 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка
2) 2 в сте­пе­ни левая круг­лая скоб­ка 20 пра­вая круг­лая скоб­ка , 33 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка , 9 в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка
3) 9 в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , 33 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка , 2 в сте­пе­ни левая круг­лая скоб­ка 20 пра­вая круг­лая скоб­ка
4) 2 в сте­пе­ни левая круг­лая скоб­ка 20 пра­вая круг­лая скоб­ка , 9 в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , 33 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка
5) 33 в сте­пе­ни 4 , 9 в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , \2 в сте­пе­ни левая круг­лая скоб­ка 20 пра­вая круг­лая скоб­ка
7.  
i

Ос­но­ва­ние ост­ро­уголь­но­го рав­но­бед­рен­но­го тре­уголь­ни­ка равно 10, а синус про­ти­во­по­лож­но­го ос­но­ва­нию угла равен 0,6. Най­ди­те пло­щадь тре­уголь­ни­ка.

8.  
i

Если 18% не­ко­то­ро­го числа равны 27, то 30% этого числа равны:

1) 63
2) 36
3) 45
4) 54
5) 55
9.  
i

В тре­уголь­ни­ке ABC из­вест­но, что \angle A = 70 гра­ду­сов,\angle B = 40 гра­ду­сов. Ука­жи­те номер вер­но­го утвер­жде­ния для сто­рон тре­уголь­ни­ка.

1) AB < BC < AC
2) BC < AB < AC
3) AB > BC > AC
4) AB > AC > BC
5) AB = BC > AC
10.  
i

На из­го­тов­ле­ние 25 пись­мен­ных сто­лов рас­хо­ду­ет­ся 3,4 м3 дре­ве­си­ны. Сколь­ко ку­би­че­ских мет­ров дре­ве­си­ны по­тре­бу­ет­ся на из­го­тов­ле­ние 110 таких сто­лов?

1) 7,72 м3
2) 14,96 м3
3) 17,5 м3
4) 25 м3
5) 34 м3
11.  
i

Пря­мые a и b, пе­ре­се­ка­ясь, об­ра­зу­ют че­ты­ре угла. Из­вест­но, что сумма трех углов равна 238°. Най­ди­те гра­дус­ную меру мень­ше­го угла.

1) 22°
2) 119°
3) 58°
4) 122°
5) 29°
12.  
i

Най­ди­те мо­дуль раз­но­сти наи­боль­ше­го и наи­мень­ше­го кор­ней урав­не­ния  левая круг­лая скоб­ка 2x в квад­ра­те плюс 3x минус 11 пра­вая круг­лая скоб­ка в квад­ра­те = левая круг­лая скоб­ка 5x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те .

13.  
i

Че­ты­рех­уголь­ник MNPK, в ко­то­ром ∠N=136°, впи­сан в окруж­ность. Най­ди­те гра­дус­ную меру угла K.

1) 68°
2) 90°
3) 44°
4) 180°
5) 105°
14.  
i

Сумма всех на­ту­раль­ных ре­ше­ний не­ра­вен­ства  левая круг­лая скоб­ка 5 минус x пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка x плюс 6 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка x минус 19 пра­вая круг­лая скоб­ка в квад­ра­те \geqslant0 равна:

1) 34
2) 35
3) 5
4) 15
5) 24
15.  
i

Най­ди­те про­из­ве­де­ние наи­мень­ше­го ре­ше­ния на ко­ли­че­ство ре­ше­ний урав­не­ния |x в квад­ра­те минус 3 ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те конец ар­гу­мен­та минус 1|=3.

16.  
i

Най­ди­те сумму всех целых чисел из об­ла­сти опре­де­ле­ния функ­ции y= дробь: чис­ли­тель: ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 48 плюс 10x минус 3x в квад­ра­те конец ар­гу­мен­та , зна­ме­на­тель: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 4 конец ар­гу­мен­та пра­вая круг­лая скоб­ка x минус 3 конец дроби .

17.  
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром изоб­ра­же­ны фи­гу­ры, сим­мет­рич­ные от­но­си­тель­но точки O.

1)

2)

3)

4)

5)

1) 1
2) 2
3) 3
4) 4
5) 5
18.  
i

Из­вест­но, что при a, рав­ном −2 и 4, зна­че­ние вы­ра­же­ния 4a в кубе плюс 3a в квад­ра­те минус ab плюс c равно нулю. Най­ди­те зна­че­ние вы­ра­же­ния b + с.

19.  
i

Ре­ши­те урав­не­ние x в квад­ра­те минус 6x плюс 5= дробь: чис­ли­тель: 28, зна­ме­на­тель: x в квад­ра­те минус 12x плюс 32 конец дроби и най­ди­те сумму его кор­ней.

20.  
i

Пусть (x; y)  — ре­ше­ние си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний 3x минус y=7,3x в квад­ра­те минус xy плюс x=32. конец си­сте­мы .

Най­ди­те зна­че­ние 3yx.

21.  
i

Ре­ше­ни­ем си­сте­мы не­ра­венств  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка 2,5x минус 1 пра­вая круг­лая скоб­ка x плюс 0,1 боль­ше 0,22x минус 1\leqslant13 минус 6x конец си­сте­мы . яв­ля­ет­ся:

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ;0,5 пра­вая квад­рат­ная скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ;2 пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ;0,2 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 0,2;0,5 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ;0,2 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 0,2;0,5 пра­вая квад­рат­ная скоб­ка
5)  левая круг­лая скоб­ка 0,2;0,5 пра­вая круг­лая скоб­ка
22.  
i

Ко­ли­че­ство целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка в квад­ра­те минус 6x минус 18, зна­ме­на­тель: левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка в квад­ра­те конец дроби боль­ше 0 на про­ме­жут­ке  левая квад­рат­ная скоб­ка минус 4;5 пра­вая квад­рат­ная скоб­ка равно:

1) 2
2) 7
3) 4
4) 5
5) 3
23.  
i

Ре­зуль­тат упро­ще­ния вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка 2x минус 4,6 пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та плюс 4,6 при −1 < x < 1 имеет вид:

1) 9,2 − 2x
2) −2x − 9
3) 2x + 9,2
4) 2x
5) −2x
24.  
i

Пусть x1 и x2  —  корни урав­не­ния x в квад­ра­те минус 3x плюс q=0. Най­ди­те число q, при ко­то­ром вы­пол­ня­ет­ся ра­вен­ство x_1 в квад­ра­те плюс x_2 в квад­ра­те =25.

1) -8
2) -3
3) 8
4) 4
5) -5
25.  
i

Сумма кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 2x плюс 1 конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та =4 минус x равна (равен):

1) 22
2)  дробь: чис­ли­тель: минус 11 минус ко­рень из: на­ча­ло ар­гу­мен­та: 181 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: минус 11 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 181 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4) −15
5) 11
26.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: 27 в сте­пе­ни x плюс 9 в сте­пе­ни x минус 6 умно­жить на 3 в сте­пе­ни x , зна­ме­на­тель: 3 в сте­пе­ни x левая круг­лая скоб­ка 3 в сте­пе­ни x минус 2 пра­вая круг­лая скоб­ка конец дроби .

1) 2 умно­жить на 3 в сте­пе­ни x
2) 3 в сте­пе­ни x плюс 3
3) 27 в сте­пе­ни x минус 3
4) 3 в сте­пе­ни x
5) 3 в сте­пе­ни x минус 3

Если x_1 и x_2  — корни урав­не­ния 3 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка =48 плюс 6 в сте­пе­ни x минус 8 умно­жить на 3 в сте­пе­ни x , то зна­че­ние 3 в сте­пе­ни левая круг­лая скоб­ка x_1 плюс x_2 пра­вая круг­лая скоб­ка равно ... .

28.  
i

Функ­ция y  =  f(x) опре­де­ле­на на мно­же­стве дей­стви­тель­ных чисел  R , яв­ля­ет­ся не­чет­ной, пе­ри­о­ди­че­ской с пе­ри­о­дом T  =  10 и при x при­над­ле­жит левая квад­рат­ная скоб­ка 0;5 пра­вая квад­рат­ная скоб­ка за­да­ет­ся фор­му­лой f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =3x в квад­ра­те минус 15x. Най­ди­те про­из­ве­де­ние абс­цисс точек пе­ре­се­че­ния пря­мой y  =  12 и гра­фи­ка функ­ции y  =  f(x) на про­ме­жут­ке [ −13; 7].

29.  
i

Пусть A= левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 5 плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка 2 минус 2} пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2,5 пра­вая круг­лая скоб­ка 5 умно­жить на ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка 5 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 1,5 пра­вая круг­лая скоб­ка 5 пра­вая круг­лая скоб­ка плюс 4 ло­га­рифм по ос­но­ва­нию 4 в квад­ра­те 5.

Най­ди­те зна­че­ние вы­ра­же­ния 2A.

30.  
i

Ко­рень урав­не­ния

 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 1,8 пра­вая круг­лая скоб­ка дробь: чис­ли­тель: 4 минус 3x, зна­ме­на­тель: 2x минус 7 конец дроби плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 1,8 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка левая круг­лая скоб­ка 4 минус 3x пра­вая круг­лая скоб­ка \times левая круг­лая скоб­ка 2x минус 7 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка =0

(или сумма кор­ней, если их не­сколь­ко) при­над­ле­жит про­ме­жут­ку:

1)  левая квад­рат­ная скоб­ка минус 1; 0 пра­вая квад­рат­ная скоб­ка
2)  левая квад­рат­ная скоб­ка 0; 1 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 1; 2 пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка 3; 4 пра­вая круг­лая скоб­ка
5)  левая квад­рат­ная скоб­ка 4; 5 пра­вая круг­лая скоб­ка
32.  
i

Зна­че­ние вы­ра­же­ния 5 синус в квад­ра­те 33 гра­ду­сов плюс 4 ко­си­нус 30 гра­ду­сов плюс 5 ко­си­нус в квад­ра­те 33 гра­ду­сов равно:

1) 5 плюс 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
2) 9
3) 14
4) 5 плюс 4 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
5) 10 плюс 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
33.  
i

Най­ди­те зна­че­ние вы­ра­же­ния:  дробь: чис­ли­тель: синус в квад­ра­те 112 гра­ду­сов, зна­ме­на­тель: 2 синус в квад­ра­те 14 гра­ду­сов умно­жить на синус в квад­ра­те 34 гра­ду­сов умно­жить на синус в квад­ра­те 62 гра­ду­сов умно­жить на синус в квад­ра­те 76 гра­ду­сов конец дроби .

34.  
i

Най­ди­те (в гра­ду­сах) наи­боль­ший от­ри­ца­тель­ный ко­рень урав­не­ния  синус в квад­ра­те левая круг­лая скоб­ка 2x минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка =1.

35.  
i

Най­ди­те уве­ли­чен­ную в 25 раз сумму квад­ра­тов кор­ней урав­не­ния

10 ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: 14 плюс 5x минус x в квад­ра­те конец дроби конец ар­гу­мен­та минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 14 плюс 5x минус x в квад­ра­те , зна­ме­на­тель: x в квад­ра­те конец дроби конец ар­гу­мен­та =19.

36.  
i

Ко­ли­че­ство целых ре­ше­ний не­ра­вен­ства 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 8 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 27 минус x пра­вая круг­лая скоб­ка боль­ше 22 равно ...

37.  
i

Три числа со­став­ля­ют гео­мет­ри­че­скую про­грес­сию, в ко­то­рой q боль­ше 1. Если вто­рой член про­грес­сии умень­шить на 18, то по­лу­чен­ные три числа в том же по­ряд­ке опять со­ста­вят гео­мет­ри­че­скую про­грес­сию. Если тре­тий член новой про­грес­сии умень­шить на 48, то по­лу­чен­ные числа со­ста­вят ариф­ме­ти­че­скую про­грес­сию. Най­ди­те сумму ис­ход­ных чисел.

38.  
i

У Юры есть не­ко­то­рое ко­ли­че­ство марок, а у Яна марок в 2 раза боль­ше, чем у Юры. Маль­чи­ки по­ме­сти­ли все свои марки в один аль­бом. Среди чисел 26; 38; 20; 37; 39 вы­бе­ри­те то, ко­то­рое может вы­ра­жать ко­ли­че­ство марок, ока­зав­ших­ся в аль­бо­ме.

1) 26
2) 38
3) 20
4) 37
5) 39
39.  
i

Длины ка­те­тов пря­мо­уголь­но­го тре­уголь­ни­ка яв­ля­ют­ся кор­ня­ми урав­не­ния x2 − 5x + 3  =  0. Най­ди­те пло­щадь тре­уголь­ни­ка.

1) 5
2) 4
3) 3
4) 2,5
5) 1,5
40.  
i

Функ­ция y= дробь: чис­ли­тель: 1, зна­ме­на­тель: синус x конец дроби не опре­де­ле­на в точке:

1)  минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби
2)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби
3)  минус 2 Пи
4)  минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 5 конец дроби
5)  дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 2 конец дроби
41.  
i

Ис­поль­зуя схе­ма­тич­ное изоб­ра­же­ние па­ра­бо­лы y=2x в квад­ра­те плюс bx плюс c, най­ди­те сумму b + c.

1) 14
2) 16
3) 12
4) 56
5) 28
42.  
i

На диа­грам­ме по­ка­за­но ко­ли­че­ство по­се­ще­ний сайта на про­тя­же­нии не­де­ли (со втор­ни­ка по вос­кре­се­нье). Уста­но­ви­те со­от­вет­ствие между во­про­са­ми А−В и от­ве­та­ми 1−6.

 

Во­просОтвет

A)  В какой день не­де­ли было на 60 по­се­ще­ний боль­ше, чем в преды­ду­щий?

Б)  В какой день не­де­ли ко­ли­че­ство по­се­ще­ний было на 20% мень­ше, чем в среду?

B)  В какой день не­де­ли ко­ли­че­ство по­се­ще­ний было на 10% боль­ше, чем в преды­ду­щий?

1)  Втор­ник.

2)  Среда.

3)  Чет­верг.

4)  Пят­ни­ца.

5)  Суб­бо­та.

6)  Вос­кре­се­нье.

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.

43.  
i

На ко­ор­ди­нат­ной пря­мой от­ме­че­ны точки А, В, С, D, E. Если рас­сто­я­ние между E и С равно  дробь: чис­ли­тель: 2, зна­ме­на­тель: 5 конец дроби , то ближе дру­гих к точке с ко­ор­ди­на­той 1,01 рас­по­ло­же­на точка:

1) A
2) B
3) C
4) D
5) E
44.  
i

Из­вест­но, что наи­мень­шее зна­че­ние функ­ции, за­дан­ной фор­му­лой y  =  x2 + 4x + c, равно −1. Тогда зна­че­ние c равно:

1) 3
2) 4
3) 5
4) −5
5) −13
45.  
i

Стро­и­тель­ная бри­га­да пла­ни­ру­ет за­ка­зать фун­да­мент­ные блоки у од­но­го из трех по­став­щи­ков. Сто­и­мость бло­ков и их до­став­ки ука­за­на в таб­ли­це. При по­куп­ке ка­ко­го ко­ли­че­ства бло­ков са­мы­ми вы­год­ны­ми будут усло­вия вто­ро­го по­став­щи­ка?

 

По­став­щикСто­и­мость

фун­да­мент­ных бло­ков
(тыс. руб. за 1 шт.)

Сто­и­мость до­став­ки

фун­да­мент­ных бло­ков
(тыс. руб. за весь заказ)

1250

1620

2265

850

3295

бес­плат­но
1) более 28
2) от 28 до 52
3) менее 52
4) от 15 до 30
5) от 29 до 51